PERTURBATIONS OF VON NEUMANN ALGEBRAS I
STABILITY OF TYPE.

By RicHarDp V. KapisoN and DANIEL KASTLER.*

1. Introduction. In this article we initiate the study of “ perturbation ”
of operator algebras. We deal with the question of structural similarities in
“neighboring ” algebras and prove that “type” is preserved under small
perturbations of a von Neumann alegbra (Theorem A). We show that suit-
ably “close” von Neumann algebras (“close” in a sense to be made precise
in the next section, Definition A, but, roughly, that the unit ball of each algebra
is norm close to the unit ball of the other) have central projections corres-
ponding to the various pure types which are close to one another. One
concludes, for example, that a von Neumann algebra “near” a factor of
type I1, is a factor of type II,.

On the path to these results, we draw several auxiliary results which
have independent interest: neighboring von Neumann algebras have neigh-
boring centers, minimal projections, abelian projections, etc.

In what sense can one speak of “perturbation” of a von Neumann
algebra? We have not “moved” it by some process—“adding a term,” for
instance. There is such a process available, however. If the von Neumann
algebra is transformed by a unitary operator close to the identity operator
the result is a “slight perturbation” of the original algebra. In this case,
the perturbed algebra retains, of course, all the structural features of the
original. We believe that this is the only possible method of perturbing an
operator algebra—that suitably close operator algebras are unitarily equivalent.
The results of this paper may be viewed as a first step in a program to establish
that unitary equivalence.

There are several other aspects of this perturbation theory which deserve
study. Are “ neighboring” representations (with the meaning evident from
the direction of this paper) of an operator algebra equivalent? We feel that
they are. Are they “inner” equivalent? (Can the unitary equivalence be
effected by a unitary operator in the von Neumann algebra generated by the
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VON NEUMANN ALGEBRAS I. 39

images of the representations?) With somewhat less conviction, we feel that
this, too, is the case. The result of [5; Theorem 7] that an automorphism «
closer to the identity automorphism than 2 is inner, appears as corroborative
evidence.

This work has its origins in the considerations surrounding nets of
algebras [4] and, in a more primitive sense, in Glimm’s uhf algebras [3]
and the “approximately finite” algebras [9; Chapter IV] of Murray and
von Neumann. The possibility of transforming one net for an algebra onto
another raises questions similar to those dealt with in this paper.

The main results are found in the third and fourth sections. In the
next section, we introduce the basic “measurement” definition and conduct
some preliminary studies of the estimates which will appear in the later proofs.

2. Notation and definitions. If & denotes a family of bounded opera-
tors on the Hilbert space %, we use the (standard) notation F’ to designate
the family of bounded operators on ¥ commuting with & (the commutant
of &), and the notation &, for the set of operators in & having bound not
exceeding 1. The algebra of all bounded operators on % is denoted by B (¥).
For each bounded operator 4, |4 —&F || =inf{||A—F|: F in F}. The
The strong-operator closure of the subset 8 of B (%) is denoted by &S-.

Definition A. 1f (@ and B are linear subspaces of B (¥),
| @—®B || —=sup{|4—B,]|,|B—0A,|:4 in 4, B in B,}.

If |[G—®B| <a and § is in the unit ball of either (I or B, there is
a T in the unit ball of the other such that |§—T || <a.

In connection with Lemma 2, our estimates, throughout the paper, will
involve @ + % — (4 —2a)% when the intial assumptions involve a. We denote
this expression by a(a) in all that follows. Our interest is in knowing that
a(a) is dominated by certain numbers provided « is (positive, and) domi-
nated by other numbers. Note that « is defined on [0, 4], monotone increasing
there, and has values in [0,§]. For the reader’s convenience, we describe
the simple considerations which lead to estimates we shall use (without addi-
tional comment). If n=8, then

2(2) = (2n)[n 42— ((n—4)*—16)}].
Now (n—4)2—16=[(n—4) —2(]> when n—4 =4/} For such

n, a(%) = (3-+¢t)n*t In any event, with n =9, a(%) g%. For large n,

a(%) is almost majorized by %
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3. Structural estimates. The lemmas which follow allow us to estimate
the degree to which structural elements (minimal projections, central pro-
j‘ections, etc.) of an operator algebra can be approximated by elements having
similar structural properties relative to a neighboring algebra.

Lemma 1. If @ is a self-adjoint algebra of operators acting on the
Hilbert space ¥, 0 < c <1, and F is a non-zero projection in (- such that
for each self-adjoint A in the unit ball of @ there is a scalar b for which
| FAF —bF | = c; then F is a minimal projection in (-

Proof. Suppose F =M +4 N, with M and N non-zero projections in (-.
Using the Kaplansky Density Theorem [6, 1; Théoréme 3, p. 43], there is a
self-adjoint 4 in the unit ball of  such that |[[4— (M —N)]=z, || <e and
I[4— (M —N)]y, | < e where z,, a unit vector in M (%), yo, a unit vector
in N(¥), and ¢ (> 0) are preassigned. Then

| Azo—2o | <e and || Ayo+yo |l <e
By assumption, there is a scalar b such that | FAF —bF | =c¢. Thus,
— | PAzy—a, || + | 20— b | = || FAz,—ba, | < | FAF—BF | =;
and
1—b= o+ || FAdzo—a, | —c 4 | F(dso—,) | < c+-e.
At the same time,
I6%0+ %ol — 4o+ FAyo | = | FAyo—Dbyo | = | FAF —bF | =c

and
1+b=c+ | FAdyot+yoll <c+e

Thus 1 < c+e Choosing e<1—c, at the outset, we arrive at a contra-
diction. Hence no decomposition of the form F =M + N is possible in (-,
and F is minimal in (-,

Lemma 2. If @ is a C*-algebra acting on the Hilbert space ¥ and E
is @ projection on 3§ such that | E—A | <a (=3) for some A in Ay, then
| E—F | < a(a) for some projection F in Q.

Proof. Since |E—A| <a, |E—A*| <a; and | E—3}(4 4 4%)|
< a. We assume that 4 is self-adjoint. Note that,

[A*—A|=[A(I—A4A)—E(I—E)|
S|AI—4)—A(I—E)| +|A(I—E)—E(I—E)|
< 2a.
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Passing to the function algebra representation of the C*-algebra generated
by A, we see that each point s of the spectrum, o(4), of A satisfies,
0 < s2—s-+42a. Thus s does not lie in the interval

[3—(F—20)% 1+ (T —20)%].
The function f defined as 0 to the left and 1 to the right of this interval is
continuous on ¢(4); and f(4) is a projection, F, in (I. At the same time,
s—s242a >0 for each s in o(4); so that s lies in

[4— (Z+42a0)5F 4 (4 R0)].
Thus

| F—A | =max{($42)t—3%,3— (1 —Ra)}} =1 — (1—Ra)};
and
|[F—E|=|F—A|+[4—E| <a(a).

Lemuma 8. If @ and B are C*-algebras acting on the Hilbert space ¥,
such that | @ —B | <a (= %) ; then, with B a projection in @ minimal
in A-, there is a projection F in B minimal in B~ such that | E—F | < a(a).
If P is a unit for @ and B, we can choose F so that | E—F | < a(4a).

Proof. From Lemma 2, there is a projection F in # such that
| E—F| <a(e) (Sa(d) <%). With B in B,, choose 4 in (@, such
that |4A—B| <3%. For some scalar ¢, FAE —cE, since E is minimal in
@-. Thus

| FBF —cF | < | FBF —FAF | + | FAF—FAE | + | FAE—EAR |
| BAE—cE |+ || cE—cF | =4 +4<1.

From Lemma 1, F is minimal in 8-

If P is a unit for B, as well as for (I, we may assume that | @ —B | <a
(= 1) and conclude that | E—F | < «(3a). In this case, there is a T in
8B, such that |[RE—P—T|<a (=3); so that |E—3(P+T)| <ia
(=+%), with 3(P+4+T) in 8B,. As before, there is a projection ¥ in®B
such that |E—F | <a(3a) (=a() <1), and the remainder of the
argument applies as it stands. ‘

LemMmA 4. A projection E in a von Neumann algebra ® 1is central if
and only if | EA—AE | <1 for each A in Ry

Proof. Restricting to the range of the unit element of #®, we may
assume I € ®. Supposing F is not central, there is no central projection P
such that #=P and I—F=I—P. From the Comparison Theorem
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[1; Lemme 1, p. 217], E and I —F have subprojections E, and F,, respec-
tively, equivalent in ®. Let V be a partial isometry in ® with initial space
E, and final space F,. Then

1=|V|=|EFV—VEE|=|EV—-VE]|,
completing the proof.

Remark A. If ® in Lemma 4 is replaced by a C*-algebra (I and we
assume that there is a constant ¢ such that | EA—AF | =c¢ <1 for each 4
in (I,, the Kaplansky Density Theorem and Lemma 4 allows us to conclude
that E is central in (.

Lemma 5. If (@ and B are C*-algebras acting on a Hilbert space X
and | @—B | <a then |- —B-| <a.

Proof. With A, in (1,7, b chosen such that |0 —®B | <b<a, and
z, y unit vectors in in % ; the set B,, of operators B in #B,- such that
|([Ae— Blz,y)| =b is weak-operator closed in 8,". Given unit vectors
Ty, LT Yt s Ya i @, choose ¢ such that | —B || <c<b and 4
in @, (using the Kaplansky Density Theorem) such that |([4d,— A]z;,y;)]
<b—c¢, j=1,- - -,n. By choice of ¢, there is a B in B, (hence in B,7)
such that ||A—B | <c¢; so that |([4—Blz,y;)| <¢ j=1, - -,n. Then
|([A4o—Blzj,y;)| <b and B€ Bg,,,, j=1, - -,n. Thus {S,,} has the
finite intersection property. As M8, is weak-operator compact (and the J,,
are weak-operator closed subsets of #,7), there is a B, in all J,,. Since
| ([Ao—B,]z,y)| = b for all unit vectors «, y in &, || 4o— B, | =b. Thus
1G-—8-| <a.

LemMma 6. If @ and B are C*-algebras acting on o Hilbert space,
[CG—B | <a (= Tlé)’ and P is a central projection in (-, there is a central

projection Q in B~ such that |P—Q | < a(a). In particular, if P is not
a scalar Q is mot a scalar.

Proof. From Lemma 2, there is a projection ¢ in #B- such that
[P—Q| <a(a) (= a(ll—o) <§). With B in 8,7, choose 4 in (I, (using

Lemma 5) such that |[A—B| < —116 Then

{@B—BQ=[¢B—Q4[+[|Q4A—PA|+||PA—AQ |+ | 4Q—BQ|
=2([4—B[+|P—Q) <1
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From Lemma 4, @ is central in 8-. Since | P—@ | < 1, if P is not a scalar,
@ is not a scalar.

Remark B. Assuming P is central in (I, in the preceding lemma, there
is a projection @ in B, from Lemma 2, such that |P—Q | <a(a). As
| @-—B- || <a (Lemma 5), and P is central in (-, the argument of Lemma
6 shows that @ is central in 8- and, a fortiori in 8.

CoroLLARY A. If In and N are von Neumann algebras acting on a

Hilbert space and | T —N || <=

0 then 9n is a factor if and only if N
is a factor.
The argument of Lemma 6 yields, as well, the following.

CororrLARY B. If @ and B are C*-algebras acting on a Hilbert space,
|@—B | < 4a, E and F are projections in (0 and B, respectively, and
|E—F| <%(1—a), then F is central if E is central.

Proof. Choose b so that | E—F | <$b<1(1—a). From Lemma 5
and the proof of Lemma 6,

| FB—BF | =2(|A—B|+ | E—F|) <a+b<1,

for each B in 8,7, assuming ¥ is central in ({. Hence, from Lemma 4, F is
central in 8.

CororLary C. If 0 and B are C*-algebras acting on a Hilbert space

1
and | A—B | <1—O,

CoroLLarY D. If @ and B are C*-algebras acting on a Hilbert space,

then ( 1is abelian if and only if B is abelian.

[a—3 | <2—’>16’ E and F are projections in (A and B, respectively, and
| E—F| <T316; then E is an abelian projection in (- if and only if F is

an abelian projection in B-.
Proof. With EAE in (EQE), (hence in (,), choose B in 8, such that

| EAE—B|| <§16' Then | EAE— EBE | = || E(EAE —B)E| <—31—0; and

| EAE — FBF | <116' From Corollary C, FBF is abelian if-and only if

EQE is abelian. But I is an abelian projection in (I~ if and only -if
EQE is abelian.
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Lemma 7. If A and B are C*-algebras acting on a Hilbert space,
1G—B|<a (é%), E and F are projections in 0 and B, respectively,
and | E—F || < a(a), then | Cg—Cr| < 2a(a), where Cg and Cr are the
central carriers of E and F relative to A~ and B-.

Proof. From Lemma 5, | @-— B~ | < @; so that we may assume that
(@ and B are von Neumann algebras. By Lemma 6, there is a central pro-
jection @ in B such that |Cr— @ | < a(a). Thus

I F—QF |=|F—E|+|CeE—QF| + | QF —QF | <3a(a) <1.
Since QF is a subprojection of F; F=QF, and Cr= Q.

Symmetrically, there is a central projection P in (@ such that | Cr—P |
< a(a) and Cg=P. Thus

| Ce(Cr—P) | = | CeCr—Cr | < a(a),
[(Ce—@Q)Cr | =|CeCr—Cr| <a(a);

so that | Cr—Cr | < Ra(a).

Lemma 8. If A and B are C*-algebras acting on a Hilbert space,
|@—®B| <43, E, Fand M, N are pairs of projections in (0 and B, respec-
twely, | E—M || <4, and | F—N | < 3, then E is equivalent to F relative
to A~ if and only if M is equivalent to N relative to B-.

Proof. Suppose E is equivalent to F and V is a partial isometry in (-
with initial space & and final space F. Choose B, in 8, such that | V—B, |
< 4. Then, with B=NB,M,

|B—V|=|NBM—FVE| <%,
|B¥B—E | = | B*B—V*V | <%,
and
|B*B—M | =|B*B—E|+|E—M| <1,

As B*B lies in the Banach algebra M#8-M with unit M ; B*B is invertible
in that algebra. In particular, B*B, hence B*, has range that of M. Simi-
larly, B has range that of N; and, from [8; Lemma 6.2.1], N is equivalent
to M relative to B-.

Lemma 9. If @ and B are C*-algebras acting on a Hilbert space,
|@—8 | <a, E and F are projections in @ and B, respectively, | E—F ||
<b, and a+2b <%;
infinite relative to 8-,

then E is infinite relative to @~ if and only if F is
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Proof. Suppose E is infinite in (I~. There is a proper subprojection E,
of E in (I~ equivalent to E. As

1
26°
there is, by Lemma 2, a projection F, in FB-F such that |E,—F,|

IEGE—FBF|=|CA—8B|+RE—F|<

< a(21—6) < 4. From Lemma 8, F, is equivalent to #. Now F, < F and F
is infinite; for

|F—F,|=|E—E,— (E—F+Fo—E,)|
Z|E—E | —(E—F|+|Fo—E,|)>1—1>0.

4. Stability results. In this section, we give estimates of the proxi-
mity of the various central portions corresponding to pure type of neighboring
von Neumann algebras. These are, then, assembled in Theorem A, the main
result.

Lemma 10. If ® and B are von Neumann algebras acting on a Hilbert
space, | R — 3 | <a (= §1§) and P, Qq are mazimal central projections

in R, B, respectwvely, such that RPq and BQ, are of type I; then
I Pa—Qall <2a(a).

Proof. Since R P, is of type I, there is an abelian projection F in & Py
with Cp=P,. From Lemma 2, there is a projection F in & such that

| E—F| < a(a) (é;—o). Thus F is abelian, from Corollary D; and

| Ce—Cr| =| Ps—Cr| <2«(a), by Lemma 7. Since F is abelian in &,
Or = Qa.

Symmetrically, there is a central subprojection P,of P,; such that
| Qa— P, || < 2a(a). Writing @, for Q;— Cr, we have

1Q:—Po@s | =11(Qa—Po) Q| = | Qu—Po || <Ra(a).

As [ Po(Cr—Pa)@Qi | = PoQ: | <Ra(a); we have [ Q] <4a(e) <L
Since @, is a projection; @, =0 and | Ps—Qq || <Ra(a).

Lemma 11. If R and & are von Neumann algebras acting on a Hilbert
space, | R —3 | <a(= 515;—0) and Py, Q. are the maximal central projec-

tions in ® and B, respectively, such that R P, and 3Qs. are of type III;
then | Py— Qs | < a(a).
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Proof. From Lemma 6, there is a central projection @ in & such that

[Pe—@Q | <ala) (== 249 If F is a finite projection in & dominated by
Q, from Lemma 9, there is a finite projection E in ® P, such that | E—F |

< a(=— )< s1nce | RPo—3BQ || < a-t+ a(a) <747 By definition of

V47
Py, E=0 and || F| <m < 1. Thus F=0. Since @ dominates no finite
projection in &, other than 0, Q = Q..

Symmetrically, there is a central subprojection P of P, in &% such that

[ P—Qx | <a(a). Writing @, for Qu—0, || PQ1— Q1 | = | (P — Q) @1 |
<a(a); while |P(Po—@)Q:ll=|PQ.| <a(a). Thus [|@:] <Ra(a)
<1; and @, =0. Hence | Po— Qs || < a(a).

LemMma 12. If R and B are von Neumann algebras acting on a Hilbert
space, | R — | <a (_2250), and P, Q., P.,, Q., are the maximal

central projections in B and B3 such that R P, and B3Q., are of type 11, and
RP,, and 3Q,., are of type Il,; then |P,,— @, || < @(5a+3a(a)) and
I Pog, — Qoo | < 40 +-3a(a) + a(5a+3a(a)).

Proof. If P and @ are the unit elements of ® and &, respectively, we
can find 4 in ®, and B in &, such that |4 —Q | <a and |P—B| <a.
Thus

|B—Q | —[BQ—Q| =] BQ—BA|+|BA—PA|
| PA—A|+[4—Q <3a,
and | P—@ || <4a. Since P, + P,, =P—P;—P, and
Q01+ch =Q_Qd_Qw; " P6‘1+Pcm_QCJ_Qcm " < 4a+3a(a)’
from Lemmas 10 and 11. Thus

1
II R (PC1+PC:L)—28(QC1+QCOO)” < 5a—|—3a(a) (él_d
From Lemma 6, there is a central subprojection Qo of Qo+ @, such that

| Poy,— Qo || < a(ba+3a(a)) (< a(160) <52 8) Since P, is finite rela-

2
tive to ® ; Q, is finite relative to &, by Lemma 9 (noting that 3 91 250 + 558

1
< %) . Thus Qo= @,

Symmetrically, there is a central subprojection P, of P, in & such
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that || @o,— Po || < a(5a 4 3a(a)). Writing @, for Q¢;— Qo, | Po@1— @1 |
< a(ba+3a(a)) and || Po(Pe,— Qo) Q1 || = || Po®:1 | < @(5a + 3a(a)). Thus
| Q.1 <1 and Q,=0. Hence | P,,—Q., | < a(ba-+3a(a)), and

| Po— Qe | < 46+ 3a(a) 4 a(50+ 3a(a)).

Remark C. In the lemma which follows, we shall make use of the fact
that if V and W are two finite-dimensional subspaces of a vector space X
and 7’ is a complement for V in X, then V' N W54 (0) if d(V) < d(W),
where d is the dimension function on the set of subspaces of X. Working
in the (finite-dimensional) subspace generated by V and W and noting that
T’ intersects this subspace in a complement, relative to it, for V; we may
assume X is finite-dimensional. As d(X) —d(V)=d(V’),

AW AV =d(X) —d(WN V') +d(W) —d(V) = d(W) —d(V) =1.

LemMA 18. If 9n and N are finite factors of type In and I, respec-
tively, in B(H), and m < n, then | Ih—N | £3.

Proof. Let = be the projection of B (%) onto 9n given by

m

B— ‘/El(ij, Cl'k)Ejk,
Fole=

where {F;.} is a self-adjoint family of m X m matrix units for M, z; is a
unit vector in the range of F,,, and 2= Ej,z;,. Then | #» || =1 and =(0)
is an algebraic complement for In in B (). It follows from the remark
preceding this lemma that there is a B of norm 1 in N such that =(B) =0.
If A is in the unit ball of M,

[TA]—1]=[14]—1B]|=14—B],

and
[A==(A—B)|=[4—B|;
so that
1=J4+|1—4)|=R14—B];

and §=<|A—B|. Thus |9 —N | £

Lemma 14, If M and N are infinite factors of types I, and I,
respectively, in B(H), and || M —N | < F5 then m=n.

Proof. We assume that m < n and produce a contradiction. Let {Z;}
be a family of n orthogonal minimal projections in 91. From Lemma 3, we
may choose n minimal projections {#;} in 9n such that | B;—F; || < . As
| B;— Ey | =1, for distinct j and %, | F;— Fx | = 1. Now 9n is isomorphic
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to B (K ), where ¥ is m dimensional; and the isomorphism carries each Fj
into a one-dimensional projection, G;. Let x; be a unit vector in the range
of G4 With z, an arbitrary unit vector in ¥, since

(Gj— Gr)To = (o, T;) T — (%o, Tx) T,
= [(@o, %) — (@0, Tx) 125 + (To, Tk) (25— k),
[(Gi— Gr)ao | =2 || 2j—ax |. Thus, when j#F,
= F—Fell=1G— G| =2]z—a .

As m is an infinite cardinal and ¥ is m-dimensional, the finite, (complex-)
rational linear combinations of an orthonormal basis for ¥ forms a dense
subset & of & having cardinality m. Since each vector in {z;} lies in the
open ball of radius § about some vector in & and there are n (> m) elements

in {z;}; | zj—= || <% for some js4k, contradicting our earlier conclusion.
Thus n=m

Lemma 15. If R and 3 are von Neumann algebras of type I acting
on the Hilbert space Y and P,, Q, are the respective central projections in

R and B corresponding to their central portions of type I, n=1,2, - -,

dim (&), then if |R—3B | <a (—3660)’ | Pr—Qnll <a(a). In par-
ticular, P,540 if Q,5%0.

Proof. From Lemma 6, there is a central projection @ in & such that
| P»— Q|| < a(a). We shall show that Q — Q,. Note that | RP,—3Q |

<a+a(a) (= 9—12) If 3@ is not of type I, (that is, if Q =£ @,), there

is a central projection @, in B3 such that Q, = @ and BQ, is of type I,, with
m%~ n. Applying Lemma 6, again, there is a central subprojection P, of

P, in R such that | P,—Q, | <a(914) (< 304)

Writing ® and & in place of ® P, and 30Q,, we may assume that ®R
is of type I,, & is of type I,n, n5&m, and | B — 3 | <a-|—oz(914) <980

We draw a contradiction from this; and conclude that @ = ¢,. When we
have done this, letting @, be @,— @, we will be able to conclude, from this
same argument, that there is a central subprojection P, of P, such that
I Po— Qo || <e(a). Butthen, | Po(Pr—@Q) |l = | Po—PoQ || < a(a); while
1 Po@ | =l (Po—Q0)Q | < a(a) so that | P, | <2a(a) <1. Thus Py=0,
and || Q|| <a(e) < 1. Hence Qo =0, @ =Q,, and | Pn— Q.| < a(a).

Tt remains to show that m =7 when ® and & are von Neumann algebras
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of types I, and I, respectively, and | & — 38 | <—2_3136' We deal, first, with

the case where the center of % has a joint (unit) eigenvector; and, for the
sake of the general case (which will apply these considerations), we replace
R and & by C*-algebras (I and B, respectively, acting on a Hilbert space ¥.
We assume that (I is isomorphic to a von Neumann algebra of type I, 8 is
61—8’ and that
there is a unit vector z, in & such that each operator in the center @ of (0
has @, as an eigenvector. By assumption [@z,] is the one-dimensional pro-
jection with z, in its range—and, hence, minimal in 4’; so that [4'z,]
(=P) is a minimal projection in @”N, where N is the unit of 0. (We are
assuming that Nz, —z,, so that P=N.) By assumption, (I is generated by
a C*-subalgebra, 9n, isomorphic to a type I, factor and its center, 4. A
self-adjoint family of matrix units for 9n generates a type I, factor, N,
containing M ; and N’N contains 4-. Now NB(H)N is unitarily equiv-
alent to N QNN acting on N(¥); so that the von Neumann algebra
generated by M and @ (that is, (-) is unitarily equivalent to N ® @-, whose
center is I® @-. Thus @~ is the center of (I~. Since P is minimal in 4-
(=#8"N), AP is a factor of type I,. From Lemma 6 there is a central

projection Q in B- such that | P—Q || < a(6ié) <—21§ Thus | @-P— B-Q |

isomorphic to a von Neumann algebra of type I, |0 —B | <

<€1§+91—2 < —1%; and B-Q is a factor (Corollary A). Since B-Q is a factor

of type I,,, Lemmas 13 and 14 tell us that n = m.

We may assume, henceforth, that neither the center of % nor that of
J has a (joint) eigenvector (not in its null space). In particular, neither
® mnor B3 has projections minimal in its center; and neither has finite-
dimensional projections in its center.

Since the set of cardinal numbers not exceeding the dimension of ¥ is
well-ordered, there is a non-zero projection P in the center 4 of ® such that
each non-zero, central projection in #® has range with dimension not less
than that of P(&). From Lemma 6, there is a central projection @ in &

such that | P—0Q | <oz(;)%) <§1§. Now, (I—Q)AP—0 or else there
is a unit vector z, such that Qz,=0 and Pz, = a,; from which 1= a, |

= (P— Q)| <§16' The Kaplansky Formula [7; Theorem 3. 4],

P—(I—QANP~IT—Q)VP—(I—Q),
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yields P~ (I—Q)V P— (I—Q) = Q; so that dim P(%)) = dim Q ().
Symmetrically, dim Q (¥) = dim P(%); so that the ranges of P and @
have the same dimension. If some non-zero central projection in 8 has range
with dimension less than that of @, the argument just given would produce
a central projection in 7 with range of dimension less than that of P—
contradicting the choice of P. It follows that @ is a central projection in &
whose range has dimension the least cardinal number among the dimensions
of the ranges of the non-zero central projections in J.

Writing ® and & in place of ®P and 3¢, we may assume, henceforth,
that ® and & are von Neumann algebras of types I,, and I, respectively, on

. 1 1 1 .
the Hilbert space &, that | ® — 3 || <%+§< o and that the dimen-

sion of the range of each non-zero central projection in ® and & is equal
to the dimension of & (working on the union of the ranges of P and @, we
may assume that & is this union).

Each (proper) norm-closed, two-sided ideal of B (%), other than the
compact operators is characterized by an infinite cardinal number and con-
sists of those operators on & whose ranges have dimension not exceeding
that cardinal number. We prove that the intersection of the ideal & of
compact operators on ¥ with ® and & is (0). If this is not the case, the
intersection contains a non-zero projection £ [2]. Since E is a compact
operator, I/ has finite-dimensional range and dominates a minimal projection
E,. The central carrier of F, is, then, a minimal projection in the center—
contradicting the present assumptions on ® and 4. Thus dNR =4 N 3
= (0).

Suppose, now, that the ideal & is not the compact operators but consists
of all operators on & whose range has dimension not exceeding the infinite
cardinal ¢/. We show that, if 4 in ® and T ind are such that |4 —T || =1,
then thereis a T, in & N ® such that | A—T, || = 1. If we have established
this for positive 4 in 02, then, for arbitrary 4 in &, we may write A =VH
where H (= (A*A)%) is a positive operator in #® and V is a partial icometry
in ® with initial space the range of H. With T in & such that |4 —T | =1,
we have

| H—T*V | — | (4% —T*)V | S | 4*—T*| S 1.

As T#*V € 4, there is, by assumption, a Ty in & N & such that | H —T, || = 1.
Thus |A—VT,|=||V(H—-T)|=H—T,|=1; and VI, €d N R.
We may assume, therefore, that A is positive. There is a projection FE.
(spectral for A) in ®, commuting with A4, such that (14 ¢)E.=AE, and
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|A(I—E)| =1+ € with €>0. If the dimension of F.(¥) exceeds «/,
then, as with our earlier use of the Kaplansky Formula, there is a unit vector
¥, in the range of E. orthogonal to range of a preassigned element of &
(since each has range whose dimension does not exceed a’). If |4 —T|
=1 and T€ d, we may assume that 7 is self-adjoint, since T*€ & and
|A—3(T 4+ T*)||=1. In this case, with z, chosen in E.(%) orthogonal
to the range of T, T*2z,=Tz,=10; and

1= [A—T| = ((A—T)a, 20) = (A0, 20) = (AEeo, o)
= (14-¢) (Fexo, 7)) =1+ e

Hence E.(%) has dimension not exceeding o«’. Writing E, for E., with
e=%, we have B, =< F,, if n=m. Since E,€ 8 N ® for each n and V E,

is a countable union of projections each of whose ranges has dimension not
exceeding the infinite cardinal «’, the same is true of V E, (=1F); so that
n

Eedn®R. As |AU—E)|=1+ :—L and (I—E,) tends strongly to

I—E, |A(I—E)|=|4—T,| =1, where To=AEc d N R.

We conclude from the foregoing that if ¢ is the natural mapping of
B(X) onto B(H)/, then ¢ carries the unit ball of ® and of 3 onto those
of $(R) and ¢(B). To see this, we note that if & is the compact operators
ANR =8NS =(0); so that ¢ maps ® and S isomorphically (hence,
isometrically) onto ¢ () and ¢(B). Tn case d is not the compact operators,
if A4+ 8] <1, thereisa 7 in &, and hence in & N & such that | 4 —T |
< 1. But then 4 —T, in the unit ball of %, is mapped by ¢ onto 4 4 .
This together with the fact that ¢ is norm-decreasing on B (%) allows us
to conclude that | ¢(R) —¢(B)|=| R —3 |.

We may also conclude that & N ® £ (0) if and only if & N S £ (0)
(when | R — 3B | <3); forif T€ N R and | T||=1, there is a B in 3
such that | B—T | <% and |[B|=1. Thus 3 < |B| and [|[2B—2T | < 1.
From the foregoing. there is a T, in & N S such that || 2B—2T, || =1; so
that 0 <||B||—3 <[ To| and T,=40.

If dim(¥)=> and & is the ideal characterized by the infinite cardinal
@ (<b), then dNR =(0) if n<b. If &N R % (0) it contains a pro-
jection and, hence, an abelian projection £ in 2. Since ® is of type I,,
the central carrier P of F is the sum n projections equivalent to E. Thus
dimP(¥)=ndim F(¥). By arrangement, dimP(H)=dim (¥)=>=0.
Since n is less than the infinite cardinal b and ndim E(¥) =10, dim E(¥)
= b—contradicting the choice of F in &. Thus & N & = (0) when n <.
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Since 154 m, one of n or m differs from b, so that one of ® or &, and,
from the foregoing, both ® and & have intersection (0) with & for each
ideal &. To complete the argument, let p be an extension to B(¥) of a
pure state of the center of ® ; and let ¢ be the representation of B (X)
engendered by p on the Hilbert space ¥, & be the kernel of ¢ and z, be a
unit vector in K such that p(T) = (¢(T)@y,x,) for each T in B(¥).
Since p restricts to a pure state of @ (the center of ®), and, in particular,
p(0?) =p(0)? for each C in B; z, is a (joint) eigenvector for each ¢(C)
in ¢(4), the center of $(® ). Having noted that the restrictions of ¢ to ®

and & are isomorphisms and that | $(R) —¢(3)| = | R — 3 | <61§’ the

appropriate hypotheses for our earlier conclusion are fulfilled; and n—m.
The main result, which follows, is a consequence of Lemmas 10, 11, 12
and 15.
TaEOREM A. If ® and B are von Neuman algebras acting on a
1
; — =__-
Hilbert space ¥, | R —3B | <e (= 26,000)’ P4, P, P, Py, and P,
n=1,2,- - -,dim(H) are the mazimal central projections in ® such that
R Py RP., RP,,, BRP, and RP, are of types I, II,, II,, III and I,
respectively, and Qq, Qe Qo,, Qu, and Qn, n=1,2,- - -, dim (¥ ) are the
corresponding central projections for B ; then | Pa— Qq| < 2a(a),

” Pcl_Q01 " < a(5a+3a(a)>’
I Po,— Qe | < 4a+3a(a)+ a(5a+ 3a(a)),

| Po— Qs | <a(a) and | P,—Qn| < a(a+R2a(a)). In particular, the
same types occur in the type decomposition of ® and &.

If we resctrict attention to the most basic situation, that of factors con-
taining I on a separable Hilbert space the conclusions simplify considerably.
We state these in:

TuEorREM B. If M is a factor and N 1s a von Neumann algebra both
containing the identity operator I and both acting on the separable Hilbert
space 3, then N is a factor of the same type as M if |M —N | < 3.

Proof. As in the second paragraph of the proof of Lemma 3, if F is a
central projection in 9, there is a projection £ in 9n such that | E—F |
<a({5) <4. From Corollary B, E is central in 9n, since |E—F|
<1< %—1. Since 9n is a factor, F—=0 or E—1; so that F—0 or F=1
(from [|[F—F | <1). Thus N is a factor.
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If I is of type I, and F is a minimal projection in 9n ; then, from
the proof of Lemma 3, there is a minimal projection F in N (such that
| E—F| <%). Thus N is a factor of type I. From Lemmas 13 and 14,
N is of type In. (If m is an infinite cardinal and Lemma 14 is applied,
the proof of Lemma 3 allows us to locate minimal projections F; such that
| E;—F;| <%, since I is in both 9n and N. The proof of Lemma 14,
then, proceeds as given.)

If T is equivalent to a proper subprojection F in 9n (so that 9n is
infinite), there is a projection N in N such that | F—N || < . Replacing
E and M by I in the proof of Lemma 8, we find that [|[B—V | <1,
| B¥B—I| < 3%, and || BB¥*—N || <1; so that, as in that argument, I is
equivalent to N in N. Since |[I—F— (I—N)|| <%} and |[[—F|=1;
Ns£I. Thus N is infinite.

If 9n is of type IT, N is not of type I, from the second paragraph of
this proof, yet N is finite. Thus N is of type I1,.

If 9 is of type III and F is a non-zero projection in N, there is a
projection K in 9n such that | F—F | < 4. Since & is separable and In
is a factor of type III; E is equivalent to I in 9n. (Note that E 40 since
Fs£0 and |F—F| <%}.) As before, F is equivalent to I in 9. Thus
‘N is a factor of type I1I.

Finally, if 9n is a factor of type II, then, from the preceding, N is not
of type I, II, or III; so that ‘N is a factor of type II,.
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