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 1. Introduction. In this article we initiate the study of " perturbation"

 of operator algebras. We deal with the question of structural similarities in

 " neighboring " algebras and prove that " type " is preserved under small

 perturbations of a von Neumann alegbra (Theorem A). We show that suit-

 ably "close" von Neumann algebras ("close" in a sense to be made precise

 in the next section, Definition A, but, roughly, that the unit ball of each algebra

 is norm close to the unit ball of the other) have central projections corres-

 ponding to the various pure types which are close to one another. One

 concludes, for example, that a von Neumann algebra " near " a factor of

 type II, is a factor of type II,.

 On the path to these results, we draw several auxiliary results which

 have independent interest: neighboring von Neumann algebras have neigh-

 boring centers, minimal projections, abelian projections, etc.

 In what sense can one speak of " perturbation " of a von Neumann

 algebra? We have not "moved" it by some process-"adding a term," for

 instance. There is such a process available, however. If the von Neumann

 algebra is transformed by a unitary operator close to the identity operator

 the result is a "slight perturbation" of the original algebra. In this case,

 the perturbed algebra retains, of course, all the structural features of the

 original. We believe that this is the only possible method of perturbing an

 operator algebra-that suitably close operator algebras are unitarily equivalent.

 The results of this paper may be viewed as a first step in a program to establish

 that unitary equivalence.

 There are several other aspects of this perturbation theory which deserve

 study. Are " neighboring" representations (with the meaning evident from

 the direction of this paper) of an operator algebra equivalent? We feel that

 they are. Are they "inner" equivalent? (Can the unitary equivalence be

 effected by a unitary operator in the von Neumann algebra generated by the
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 images of the representations?) With somewhat less conviction, we feel that

 this, too, is the case. The result of [5; Theorem 7] that an automorphism a

 closer to the identity automorphism than 2 is inner, appears as corroborative

 evidence.

 This work has its origins in the considerations surrounding nets of

 algebras [4] and, in a more primitive sense, in Glimm's uhf algebras [3]
 and the "approximately finite" algebras [9; Chapter IV] of Murray and

 von Neumann. The possibility of transforming one net for an algebra onto

 another raises questions similar to those dealt with in this paper.

 The main results are found in the third and fourth sections. In the

 next section, we introduce the basic "measurement" definition and conduct

 some preliminary studies of the estimates which will appear in the later proofs.

 2. Notation and definitions. If 5 denotes a family of bounded opera-

 tors on the Hilbert space 5, we use the (standard) notation ' to designate

 the family of bounded operators on 5 commuting with 5 (the commutant

 of 5), and the notation Si for the set of operators in 3 having bound not

 exceeding 1. The algebra of all bounded operators on 51 is denoted by a3 (51).

 For each bounded operator A, 11 A- 11 =inf{IIA F11: F in 5}. The
 The strong-operator closure of the subset .3 of ? (5) is denoted by p-.

 Definition A. If a and tB are linear subspaces of i (51 ),

 ji aI- 11 ==sup{ JIA - 1 SI 1I B-(, 11: A in a1, B in 61).

 If 11 a -3 11 < a and S is in the unit ball of either a or S, there is
 a T in the unit ball of the other such that 11 S - T 11 < a.

 In connection with Lemma 2, our estimates, throughout the paper, will

 involve a + I - (l - 2a) I when the intial assumptions involve a. We denote
 this expression by a(a) in all that follows. Our interest is in knowing that
 a (a) is dominated by certain numbers provided a is (positive, and) domi-

 nated by other numbers. Note that a is defined on [0, l], monotone increasing

 there, and has values in [0, -j. For the reader's convenience, we describe

 the simple considerations which lead to estimates we shall use (without addi-

 tional comment). If n > 8, then

 ac) =( (2n) -1 [n + 2- ((n 4) 2 - 16)1].
 n

 Now (n -4)216 [(n -4) -21]2 when n- 4?4-1+t. For such
 1 1 4

 n, x(-)_? (3 + t)n1. In any event, with n>9, x(-) _-. For large n,
 n(-) is almost mjorizeid bn nn

 a(- is almost mnajorizeld by 3.
 n n
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 3. Structural estimates. The lemmas which follow allow us to estimate

 the degree to which structural elements (minimal projections, central pro-

 jections, etc.) of an operator algebra can be approximated by elements having

 similar structural properties relative to a neighboring algebra.

 LEMMA 1. If a is a self-adjoint algebra of operators acting on the

 Hilbert space S, 0 < c < 1, and F is a non-zero projection in a- such that
 for each self-adjoint A in the unit ball of a there is a scalar b for which

 PAP - bF II c; then F is a minimal projection in a-.

 Proof. Suppose F =- M + N, with A1 and N non-zero projections in a-.

 Using the Kaplansky Density Theorem [6, 1; Theoreme 3, p. 43], there is a

 self-adjoint A in the unit ball of a such that 11 [A - (A1 - N)]xo 11 < e and

 II[A- (M -N)]yo 11 <E, where xo, a unit vector in M((S), yo, a unit vector

 in N(N9), and e (> 0) are preassigned. Then

 11 Axo -xo 11 < e and 11 Ayo+yo 11 < e

 By assumption, there is a scalar b such that FAP - bF 11 ? c. Thus,

 -11 FAxo -xo 11 +? x0-bbxo 1__ FAxo - bxo _1 FAF bF 11 ? c;

 and

 1 b<C c+IFAxo- xoI c =+c F(Axo x0)I< c+,.

 At the same time,

 11 byo+ yo 11 yo + FAyo _ PAyo- byo 11 _ 11 FAF- bE 11 _c

 and

 1 + b ? c + 11 FAyo +yo 11 < c + e.

 Thus 1 < c + e. Choosing e K 1- c, at the outset, we arrive at a contra-
 diction. Hence no decomposition of the form F = M + N is possible in a-,
 and F is minimal in a-.

 LEMMA 2. If a is a C*-algebra acting on the Hilbert space X9 and E
 is a projection on 9 such that 11 E -A 11 < a (? j) for some A in al, then
 E-F 11 < 2(a) for some projection F in a.

 Proof. Since 11 E-A 11 < a, 11 E-A* 11 < a; and 11 E '(A +A*)
 < a. We assume that A is self-adjoint. Note that,

 A2 -A - 1= A(I-A) -E(I-E)II
 <11 A(I-A) -A(I-E) 11+11 A(I-E) -E(I-E)
 < 2a.
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 Passing to the function algebra representation of the C*-algebra generated

 by A, we see that each point s of the spectrum, o (A), of A satisfies,

 0 < S2 _ s + 2a. Thus s does not lie in the interval

 [-1- -2a)*,, 2 + (4 2a)l].

 The function f defined as 0 to the left and 1 to the right of this interval is
 continuous on <r(A); and f(A) is a projection, F, in a. At the same time,

 s -s2+ 2a > O for each s in ae(A) ; so that s lies in

 [(I 1+ 2a) -1 + (I +2a)]

 Thus

 IIF A 11 max{ + 2a) 2 2a)1 2 - 2a) -;

 and

 11F-E 1 F-A 11+ 11 A -E 11 < a (a).

 LEMMA 3. if a and 3 are C*-algebras acting on the Hilbert space 9(,

 such that iI a s 11 < a (? T-'); then, with E a projection ina a minimal
 in a-, there is a projection F in 3 minimal in 63- such that 11 E-F 11 < a (a).
 If P is a unit for a and 3, we can choose F so that 11 E -F 1 < a (a).

 Proof. From Lemma 2, there is a projection F in 0 such that

 1}E-F 11 < a(a) (<ca(f) < 1). With B in 61, choose A in a, such
 that 11 A B II < . For some scalar c, EAE cE, since E is minimal in
 a-. Thus

 FBF-cF 1 C11 FBF -FA 1 + 11 FAF-FAE I+ IF AE EAE
 + IIEAE -cE 11+1I cE -cF I+I<1.

 From Lemma I, F is minimal in 3-.

 If P is a unit for 0, as well as for a, we may assume that -1 a 1 <a

 ( ) and conclude that lE -F II <ac(ia). In this case, there is a T in
 5? such that l2E- P -T 11 <a (?:); so that 1l E-(P+ T)ll <Pa
 ( -g) with 1 (P + T) in 61. As before, there is a projection F in g
 such that 1 E -F 11 < a(a) (? ac(Y) < 1), and the remainder of the
 argument applies as it stands.

 LEMMA 4. A projection E in a von Neumann algebra O? is central if

 and only if 1 EA -AE 11 < 1 for each A in 1.'

 Proof. Restricting to the range of the unit element of X, we may

 assume I E ?. Supposing E is not central, there is no central projection P

 such that E ? P and I- E I -P. From the Comparison Theorem
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 [1; Lemme 1, p. 217], E and I-E have subprojections Eo and F0, respec-

 tively, equivalent in 2. Let V be a partial isometry in D? with initial space

 EO and final space F0. Then

 1 11 V IIIEFoV -VEoE I=IIEV -VE 1,

 completing the proof.

 Remark A. If D? in Lemma 4 is replaced by a C*-algebra C- and we

 assume that there is a constant c such that 11 EA - AE 11 C c < 1 for each A
 in a1, the Kaplansky Density Theorem and Lemma 4 allows us to conclucle
 that E is central in C.

 LEMIMIA 5. If a and a3 are CO-algebras acting on a Hilbert space 4

 and 11 a 3 11 < a then 11 a- -- 11 < a.

 Proof. With AO in a,-, b chosen such that 11 a - 11 < b < a, and
 x, y unit vectors in in &9; the set ,v of operators B in 03- such that
 I ([Ao- B]x, y) ? < b is weak-operator closed in 0,-. Given unit vectors
 x1, . Xn;Yi, ,yn in , choose c such that 11 C- 3 < c < b and A

 in a1 (using the Kaplansky Density Theorem) such that ( [Ao - A ] xj, yj) I
 < b -c, j 1, * ,n. By choice of c, there is a B in 63 (hence in 3,-)

 such that 11 A -B 11 < c; so that I ([A B]xj,yj) < c, j 1,- ,n. Then
 ([Ao -B]xj,yy)| < b and B C Ax , j 1, ,n. Thus {.3 x,y} has the

 finite intersection property. As 03- is weak-operator compact (and the Ay
 are weak-operator closed subsets of 3r-), there is a Bo in all &,. Since

 [AO- BO]x, y) ? b for all unit vectors x, y in 9(, AO- Bo b. Thus
 a--C- 11 < a.

 LEMIMIA 6. If a and 03 ar-e CG-algebras acting on a Hilbert space,

 aC-3 11 < a (- I), and P is a centiral projection in a-, there is a centiral

 projection Q in 03- such that 1 P -Q 11 < a (a). In particular, if P is not
 a scalar Q is not a scalar.

 Proof. From Lemma 2, there is a projection Q in 3- such that

 11 P-Q 11 < a (a) (_ c: ( I) < 2 With B in 03,,-, choose A in t?1- (using
 10

 Lemma 5) such that 11 A -B 11 < 1. Then

 IQB -BQ 1? 1 QB -QA 11+1 QA -PA 11+11 PA -AQ 11+]I AQ-BQII
 2 (11 A -B II?+ 1 P- Q 1I) < 1.
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 From Lemma 4, Q is central in 6 -. Since 11 P - Q 11 < 1, if P is not a scalar,
 Q is not a scalar.

 Remar1k B. Assuming P is central in a, in the preceding lemma, there

 is a projection Q in X3, from Lemma 2, such that 11 P -Q 11 < a(a). As
 11 - C 3- j3 < a (Lemma 5), and P is central in a-, the argument of Lemma
 6 shows that Q is central in 3- and, a fortiori in B3.

 COROLLARY A. If 9Th and 'l are von Neumann algebras acting on a

 Hilbert space and 9fl'fl II <ii5 then 9T is a factor if and only if 'I

 is a factor.

 The argument of- Lemma 6 yields, as well, the following.

 COROLLARY B. If a and 63 are C*-algebras acting on a Hilbert space,

 a -3 < la, E and F are projections in -a and 03, respectively, and

 liE-F 1 < (1- a), then F is central if E is central.

 Proof. Choose b so that 1j E -F < 1b < (1 -a). From Lemma 5
 and the proof of Lemma 6,

 11 FB-BF _1 - 2(1I A -B 11 + 11 E-F 11) < a+ b < 1,

 for each B in B,-, assuming E is central in a. Hence, from Lemma 4, F is
 central in B3.

 COROLLARY C. If a and #3 are C*-algebras acting on a Hilbert space

 and 11 - - 11 < I then a is aibelian if and only if 03 is abelian.

 COROLLARY D. if a and 03 are CG-algebras acting on a Hilbert space,

 ii a - j j < , E and F aie piolections in C and ;3, iespectively, and
 10

 E-F 1j < ; then E is an abelian piojection in a- if and only if F is 30

 an abelian projection in p3-.

 Proof. With EAE in (EaE)1 (hence in C1), choose B in 6, such that

 EAE-B 11 < 1 Then 11 EAE-EBEj E (EAE-B) E 11 < 31; and

 11 EAE - FBF 11 -From Corgollary C, F03F is abelian if and only if

 EaE is abelian. But E is an abelian projection in a- if and only -if
 EaE is abelian.
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 LEMMA 7. If a and #3 are C*-algebras acting on a Hilbert space,

 12 II a- 3II< a (?-1l) ' E and F are pro jections in a and X3, respectively,

 and 1j E-F 1j < a(a), then 1j CE-CF 11 < 2a(a), where CE and CF are the
 central carriers of E and F relative to Ga and p3.

 Proof. From Lemma 5, 11 a- 3- 11 < a; so that we may assume that
 a and i3 are von Neumann algebras. By Lemma 6, there is a central pro-
 jection' Q in #3 such that 1 CE -Q 11 < a(a). Thus

 11 F-QF 11 C || F-E 11 + || CEE-QE 11 + 1I QE-QF 11 < 3a(a) < 1.

 Since QF is a subprojection of F; F = QF, and CF ? Q.

 Symmetrically, there is a central projection P in a such that 1I CF-P
 <ca(a) and CE P. Thus

 OCE(CF -P) 1=|| CECF -CE || < a(a),
 | (CE -Q)CF 11 || CEF -CF || < a(a);

 so that | CE -CF | < 2a(a).

 LEMMA 8. If a and #3 are C*-algebras acting on a Hilbert space,

 11 a - 11 < 1, E, F and 1M1, N are pai-s of projections in a and 3, respec-
 tively, 1j E-Al 11 < 8, and 11 F -N 11 < j, then E is equivalent to F relative
 to a- if and only if M1 is equivalent to N relative to 63-.

 Proof. Suppose E is equivalent to F and V is a partial isometry in a-

 with initial space E and final space F. Choose BO in D1- such that 11 V -B 11
 <W. Then, with B = NBOM,

 B - =V INBoM- FVE 11 <i,

 1IB*B -E 1= B*B -V* V 11 < 41,
 and

 B*B-M _ 1 B*B-E 11 + 1? E-M <I <1,

 As B*B lies in the Banach algebra M13-Ml with unit Al; B*B is invertible

 in that algebra. In particular, B*B, hence B*, has range that of Al. Simi-

 larly, B has range that of N; and, from [8; Lemma 6. 2. 1], N is equivalent

 to Mll relative to fi-.

 LEMMA 9. If a and 1 are C*-algebras acting on a Hilbert space,

 -ia-a1 < a, E and F are projections in a and 6, respectively, 11 E - 11

 < b, and a + 2b < I ; then E is infinite relative to a- if and only if F is
 26'

 infinite relative to 63-.
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 Proof. Suppose E is infinite in a1-. There is a proper subprojection Eo
 of E in Cl- equivalent to E. As

 II Ea-E- F3-F 1 -<II a o il + 211 E-F I <

 there is, by Lemma 2, a projection F0 in Ff3-F such that 11 Eo -0 F

 < x(216) <j. From Lemma 8, Fo is equivalent to F. Now F0 < F and F

 is infinite; for

 11 F- 0 1111 E- Eo (E- F + Fo -Eo) 11
 ,_1 E-E0 -E E - F 11 + 11 Fo -Eo 1) >1-1 > 0.

 4. Stability results. In this section, we give estimates of the proxi-

 mity of the various central portions corresponding to pure type of neighboring

 von Neumann algebras. These are, then, assembled in Theorem A, the main

 result.

 LEMMA 10. If D? and A are von Neumiann algebras acting on a Hilbert

 space, - < a (1) anzd Pd, Qd are mraximral central projectionzs

 in X?, A, respectively, such that 2 Pd and A3Qd are of type I; then

 11Pd -Qd || < 2a (a).

 Proof. Since ? Pd is of type I, there is an abelian projection E in a Pd

 with CB = Pd. From Lemma 2, there is a projection F in . such that

 fE-F 11 < a (a) ( 30). Thus F is abelian, from Corollary D; and
 CEB CF - CF Pd- CF I < 2a(a), by Lemma 7. Since F is abelian in ,

 CF ? Qd.

 Symmetrically, there is a central subprojection PO of Pd such that

 11 Qd -Po 11 < 2a(a). Writing Q1 for Qd- CF, we have

 11 Q1lPOQ1 PQ11 1! (Qd- PO)Q1 Q 11 11 Qd-Po 11 < 2ac(a).

 As Po(CF -Pd)Ql 11 11 PoQl 11 < 2a(a); we have 11 Q, 11 < 4a(a) < 1.
 Since Q, is a projection; Q1 = 0 and Pd - Qd 11 < 2a (a).

 LEMMA 11. If 2 azd A are voz NATeumiann algebras acting on a Hilbert

 space, 11 2 - 11 < a(c 1 ) azd P,, Q, are the nmaxinmal central projec-
 750

 tions in 2 and ., respectively, such that ?Pc,. anld 3Q) are of type III;

 then IIPD- Q,O 11 < a(a).
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 Proof. From Lemma 6, there is a central projection Q in .3 such that

 11 P. -Q 11 < c (a) (< ). If F is a finite projection in j dominated by 249

 Q, from Lemma 9, there is a finite projection E in P,,, such that 1J E -F F

 <a~(k) < 712 since 11 Po -rQ <a+ ac(a) < By definition of
 77 740 747*

 P,,, E= 0 and 11 F 11 < 7120 < 1. Thus F= O. Since Q dominates no finite

 projection in .3, other than 0, Q _ Qoo.

 Symmetrically, there is a central subprojection P of P,O in 2 such that

 11 P -Q. 11 < a (a). Writing Q1 for Qoo -Q, 11 PQ1- Q1 | || (P- Q)Qi
 <*a(a); while 11 P(Poo -Q)Q 11 11 PQ, 11 < cs(a). Thus 11 Q, 11 < 2a(a)
 <1 ; and Q1 0. Hence 11 P,o- Qoo 11 < (a).

 LEMMA 12. If ? and .3 are von Neumiann algebras acting on a Hilbert

 space, - <a (?2250), and Pc,, Qcl, Pcj, Q, are the nmaximal

 central projections in 2 and j such that R Pc1 and 3 Qcl are of type II, and

 ?P.. and r6Qc. are of type II.; then IPcl1- Ql 11 < a(5a+3a(a)) and
 11 PcOO Qcoo 11 < 4a + 3a (a) + a(5a + 3a (a) )

 Proof. If P and Q are the unit elements of ? and ., respectively, we

 can find A in 1 and B in .1 such that 11 A -Q 11 < a and 11 P -B < a.
 Thus

 B-Q 11 11 BQ-Q 11 ' 11 BQ-BA 11 + 11 BA-PA 11
 + 11 PA-A 11 + 11 A-Q 11 < 3a,

 and 11 P -Q 11 < 4a. Since Pc? + Pc,- P Pd- P and

 Qo, + Qc. Q -Qd -Q. 11 Pc, + Pc,. Qc- QCx 11 < 4a + 3a(a),

 from Lemmas 10 and 11. Thus

 D? 2(PC,+ PC.) - (QC, +QC,.) < 5a + 3a(a^) (

 From Lemma 6, there is a central subprojection QO of Q,1 + Qc, such that

 QP 11 < <a(5a + 3a(a)) (< (~1 ) <528). Since PC1 is finite rela-

 tive to ? ; QO is finite relative to A, by Lemma 9 (noting that5 52 8

 < 2 6).Thus QOC QC.

 Symmetrically, t.here is a central subprojection PO of P, in 2 such
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 that 11 QC1- Po | < (5a+ 3aa)). ) Writinog Q1 for Q,- QO, 11 PoQ1- Q 11
 < a(5a+3a(a)) and 11Po(P1- Qo)Q1 11 PoQ11 <a,(5a+3c3(a)). Thus
 IQ, 1! <1 and Q1 O. Hence IIP01-Q,1I <a(5a+3a (a)), and

 || PC,: Qcoo || < 4a + 32 (a) + a(5a + 3a (a) )

 Remark C. In the lemma which follows, we shall make use of the fact

 that if V and TV are two finite-dimensional subspaces of a vector space X

 and V' is a complement for V in X, then VJ' nl Tv=y/= (o) if d(V) <d(WY),
 where d is the dimension function on the set of subspaces of X. Working

 in the (finite-dimensional) subspace generated by V and WF and noting that

 V' intersects this subspace in a complement, relative to it, for V; we may

 assume X is finite-dimensional. As d(X) -d(V) d(V'),

 d(W A V1') =d(X) -d(W V V') + d(W) -d(TV) > d(I) -d(1V) > 1.

 LEAIAIA 13. If 7h and 91 are finite factors of type Im and I,, respec-
 tively, in D3 (N9), and m < n, then I 9T h- 11 :$ -.

 Proof. Let 7r be the projection of D3 (9) onto 9n given by

 M

 B-- , (Bxj, Xk) Ejk,
 jln-=l

 where {Ejk) is a self-adjoint family of m X rn matrix units for 9n, xi is a
 unit vector in the range of E1l, and xk = Eklxl. Then 11 7r 1 and 7r-1 (0)
 is an algebraic complement for qn in D (69 ). It follows from the remark
 preceding this lemma that there is a B of norm 1 in %I such that 7r(B) 0.

 If A is in the unit ball of 9T,

 IIAti- IA[ [B[ I[A -Bl

 and

 11A =1 7r(A-B) j ?A -B 11;
 so that

 IC 11 A I+ I 1-1 A 1! 1 '211 A B1;

 and <IIA- B I. Thus 1 - 21
 LEMMA 14. If 9T and 9% are infinite factors of types I,, and q1,

 respectively, in D3(N), and 1I 9n& l < -! then m=-n.

 Proof. We assume that m < n and produce a contradiction. Let {Ej}
 be a family of n orthogonal minimal projections in 91. From Lemmia 3, we

 may choose n minimal projections {FF} in 9T such that 1- Ej-Fj 11 < . As
 Ej - Ek 1, for distinct j and k, j Fj - Fk 1 > 1 Now 9T is isomorphic
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 to 3(I), where I is m dimensional; and the isomorphism carries each FP

 into a one-dimensional projection, Gj. Let xj be a unit vector in the range
 of Gj. With xo an arbitrary unit vector in X, since

 (Gj -Gk)) Xo (Xo, Xi) Xj- (Xo, Xk) Xk

 [(Xo,xi) - (Xo,xk)]xi + (Xo,Xk) (Xj- Xk),

 (Gj -Gk)xo ?211 X -Xk 11. Thus, when j=/=7k,

 4 C 11 Fj - Fk | ==| Gj -Gk 2 1 Xj- XkI11

 As m is an infinite cardinal and A is rn-dimensional, the finite, (complex-)

 rational linear combinations of an orthonormal basis for I forms a dense

 subset .3 of X having cardinality m. Since each vector in {xj} lies in the
 open ball of radius 1 about some vector in .3 and there are n (> rn) elements

 in {xj}; XI - Xk 11 < I for some j L k, contradicting our earlier conclusion.
 Thus n rn.

 LEMMA 15. If IR and .3 are von Neumann algebras of type I acting

 on the Hilbert space %9 and P., Qn are the respective central projections in

 t? and 3 corresponding to their central portions of type In, n =1,2, ,

 dim (G , then if 11 [ -A 11 < a (?3J60), If Pit-Qn ll < a(a). In par-

 ticular, Pn # 0 if Qn # 0.

 Proof. From Lemma 6, there is a central projection Q in . such that

 Pn -Q 11 < ac(a). We shall show that Q=== Qn. Note that 11 IRP,,-r3Q 11

 < a +a(a) (? ). If r&3Q is not of type In (that is, if Q _$ Qn1), there 914

 is a central projection Q0 in .3 such that Q0 < Q and 3Q0 is of type 1Im with

 m# n. Applying Lemma 6, again, there is a central subprojection P0 of

 Pn in D? such that 11 Pjj Q 11 <a (14) (< 304).

 Writing D? and .3 in place of D??PO and A Q0, we may assume that D?

 is of type I?, A is of type I, n in, and 11 j --d 11 < a + ,9(4 <280
 We draw a contradiction from this; and conclude that Q ? Q,,. When we
 have done this, letting Q0 be Q, - Q, we will be able to conclude, from this

 same argument, that there is a central subprojection P0 of P,, such that

 Po - Qo 11 < a,(a). But then, 11 Po(Pn -Q) 11 =11 Po -PoQ 11 < (a) ; while
 11 PoQ 11 11 (PoF- Q)Q 11 < c (a) so that 11 Po 11 < 2c a(a) < 1. Thus PO - 0,
 and 11 Q 11 <ca(a) < 1. Hence Q0 = 0, Q = Q, and 11 Pn- Qn, 11 < o (a).

 It remains to show that in m n when 2 and A are von Neumann algebras
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 of types In and Im, respectively, and 11 -. 11- We deal, first, with

 the case where the center of ? has a joint (unit) eigenvector; and, for the
 sake of the general case (which will apply these considerations), we replace

 2 and .3 by CU-algebras a and X3, respectively, acting on a Hilbert space 6(.
 We assume that (Q is isomorphic to a von Neumann algebra of type 4,, D3 is

 isomorphic to a von Neumann algebra of type Im 11 a- a3 11 < I , and that 68'

 there is a unit vector x0 in 5l such that each operator in the center e of Ca

 has x0 as an eigenvector. By assumption [ExJ] is the one-dimensional pro-
 jection with x0 in its range-and, hence, minimal in B'; so that [ e'xo]
 ( P) is a minimal projection in 9"N, where N is the unit of a. (We are
 assuming that Nxo xo, so that P < N.) By assumption, (l is generated by

 a C*-subalgebra, 9T, isomorphic to a type I,n factor and its center, E. A

 self-adjoint family of matrix units for 9nt generates a type I,, factor, %l,
 containing 9'; and 91 'N contains I!-. Now N03(6V)N is unitarily equiv-

 alent to 9% ?8 'l'N acting on N (S9 ); so that the von Neumann algebra

 generated by 9th and e (that is, C-) is unitarily equivalent to 91 0 E-, whose
 center is I? 9-. Thus e- is the center of CT. Since P is minimal in e-
 (=S "N), G-P is a factor of type Iq. From Lemma 6 there is a central

 projection Q in 03- such that 11 P- Q ! < a(68) < 22. Thus 11 a-P 3-Q 11

 < G8+ I < -1; and c3-Q is a factor (Corollary A). Since c3-Q is a factor
 of type Irn, Lemmas 13 and 14 tell us that n - m.

 We may assume, henceforth, that neither the center of 2 nor that of

 .3 has a (joint) eigenvector (not in its null space). In particular, neither

 2 nor A has projections minimal in its center; and neither has finite-
 dimensional projections in its cent.er.

 Since the set of cardinal numbers not exceeding the dimension of N is

 well-ordered, there is a non-zero projection P in the center E of 2 such that

 each non-zero, central projection in 2 has range with dimension not less

 than that of P (N). From Lemma 6, there is a central projection Q in .3

 such that 11 P-Q 11 < a,( % ) < I \Now, (I-Q) A P=0 or else there
 is a unit vector x0 such that Qxo = 0 and Px0,= x; from which 1 1 1

 (P - Q) x0 ff < 9The Kaplansky Formula [,; Theorem a. 4],

 P- (I-Q) A P - (I-Q) V P- (I- Q),

 4
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 yields P - (I -Q) VP- (I -Q) Q; so that dimP(S))_ dimQ( 9i).

 Symmetrically, dim Q (9) ? dim P(9); so that the ranges of P and Q

 have the same dimension. If some non-zero central projection in .3 has range
 with dimension less than that of Q, the argument just given would produce

 a central projection in ? with range of dimension less than that of P-
 contradicting the choice of P. It follows that Q is a central projection in A

 whose range has dimension the least cardinal number among the dimensions

 of t.he ranges of the non-zero central projections in P.
 Writing 2 and A in place of 2 P and A Q, we may assume, henceforth,

 that 2 and .3 are von Neumann algebras of types In, and I,,, respectively, on

 the Hilbert space 29, that 11 < 2 ?+ 1 < 68' and that the dimeni-

 sion of the range of each non-zero central projection in 2 and A is equal
 to the dimension of 9 (working on the union of the ranges of P and Q, we
 may assume that S9 is this union).

 Each (proper) norm-closed, two-sided ideal of B (N ), other than the

 compact operators is characterized by an infinite cardinal number and con-

 sists of those operators on 9 whose ranges have dimension not exceeding

 that cardinal number. We prove that the intersection of the ideal c} of
 compact operators on ?4 with 2 and A is (0). If this is not the case, the

 intersectioll contains a non-zero projection E [2]. Since E is a compact

 operator, E has finite-dimensional range and dominates a minimal projection

 Eo. The central carrier of Eo is, then, a minimal projection in the center-

 contradicting the present assumptions on 2 and A. Thus a n 2 a n A

 () .
 Suppose, now, that the ideal c} is not the compact operators but consists

 of all operators on 9 whose range has dimension not exceeding the infinite

 cardinal a'. We show that, if A in 2 and T in c are such that 11 A - T 11 1,
 then there is a To in a} n 2 such that 11 A -To 1 ? . If we have established
 this for positive A in X, then, for arbitrary A in X, we may write A - VH

 where H (= (A *A)') is a positive operator in 2 and V is a partial icometry

 in 2 with initial space the range of H. With T in a such that i1 A - T ? 1,
 we have

 1H H -T*V 1 1 (A* - T*) V 11 ? 11 A* - T* 1

 As T*Y C E , there is, by assumption, a To ina n e such that 11 H To ? 1.
 Thus 11 A -VTo 11 =11 T(H- To) 11 < 11 H-To 11 1; and clVTO E f n 2 .
 We may assume, therefore, that A is positive. There is a projection E,

 (spectral for A) in X, commuting with A, such that (1 +?E)Ee ? AEe and
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 A (I Ee) 1 C E with E > 0. If the dimension of Ee(N91) exceeds a',

 then, as with our earlier use of the Kaplansky Formula, there is a unit -vector

 xo in the range of Ee orthogonal to range of a preassigned element of a

 (since each has range whose dimension does not exceed a'). If 11 A - T
 ? 1 and T C a, we may assume that T is self-adjoint, since T* C a} and

 tA- ?(T+T*) :;1. In this case, with xo chosen in Ee(3() orthogonal
 to the range of T, T*xo T-x 0; and

 1 11 A -T 11 ((A -T)xo,xo) (Axo, xo) = (AEeXo,xo)

 ? (1+E)(EeXo,xo) I+E.

 Hence Ee (t&() has dimension not exceeding a'. Writing En. for Ee, with

 = -, we have E,, ? E,,, if n _ int. Since E,, C aQ n 0 for each n and V E,,

 is a countable union of projections each of whose ranges has dimension not

 exceeding the infinite cardinal a', the same is true of V E,, (= E) ; so that

 1~~~~~~

 EC a n ?2. As 11 A(I-E-n) 11 I + - and (I-En) tends strongly to

 I- E, 1A(I- E)f f!A- To0!1, where To =AEc A A9n S.
 We conclude from the foregoing that if 0 is the natural mapping of

 3(9) onto 3(94)/1a, then 0 carries the unit ball of 2 and of . onto those
 of + ( ) and (s). To see this, we note that if a} is the compact operators

 a n 2 a n = (0); so that 0 maps N and A isomorphically (hence,
 isometrically) onto 0 ( X?) and 0 ( A3). In case a is not the compact operators,
 if 11 A + a 11 < 1, there is a T in a, and hence in a n 9 such that 11 A -T l!
 < 1. But then A-T, in the unit ball of X , is mapped by 0 onto A + a.
 This together with tlie fact that + is norm-decreasing on 03 (9) allows us

 to conclude that 11 0 ( N ) - ) ( ? ) 11 11 2 - jA |.
 We may also conclude that a} n 2 7 (0) if and only if a n f 73 L (0)

 (when 1 - < -<) ; for if T E 0n ? and Tj T =1, there is a B in
 such that B B-T11 < 1 and 1B 1?<1. Thus 1 < 1IBII and 112B---2T11 <1.
 From the foregoing. there is a To in a n A such that 11 2B -2To 1; so
 that 0 < IB 11 - -< 11 To 11 and To # O.

 If dim (W) b and a is the ideal characterized by the infinite cardinal

 a' (< b), then a ? n 2 = (0) if n < b. If a n 2 #(O) it contains a pro-
 jection and, hence, an abelian projection E in R. Since 2 is of type I,,
 the central carrier P of E is the sum n projections equi-valent to E. Thlus
 dimP (9) =ndim E (9). Byr arrangement, dimP( S9) din (S) b.
 Since n is less than the infinite cardinal b and n dim E() =b, dim E ()

 b-contradicting the choice of E in a>. Thus a} n 2 = (0) when n < b.
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 Since n 7#nn, one of n or mn differs from b, so that one of 2 or A, and,

 from the foregoing, both D? and A have intersection (0) with a for each
 ideal a . To complete the argument, let p be an extension to % (S) of a

 pure state of the center of N ; and let 0 be the representation of 3(&()
 engendered by p on the Hilbert space X, a} be the kernel of 0 and x0 be a
 unit vector in g such that p(T) (q(T)xo, xo) for each T in 3 (G9).
 Since p restricts t.o a pure state of e (the center of a?), and, in particular,

 p(C2) = p(C)2, for each C in V; xo is a (joint) eigenvector for each +(C)
 in +(B), the center of H( 2 ). Having noted that the restrictions of p to a

 and A are isomorphisms and that jj p() )-p()j ?11-? <-3 < the

 appropriate hypotheses for our earlier conclusion are fulfilled; and n = m.

 The main result, which follows, is a consequence of Lemmas 10, 11, 12

 and 15.

 THEOREMI A. If 2 and A are von Neumnan algebras acting on a

 Hilbert space 9!, -11 < a (? 000) Pd, Pc,7 Pc, Po and Pn,

 n 1,2, , dim(&) are the mnaximnal central projections in 9 such that

 9 Pd, 9 Pc, P P P, and Pn are of types I, II,, II,,, III and I.,
 r espectively, and Qd, Qc0, Qc,, QUQ, and Qn, n = 1, 2, , dim ( ) a}re the

 corresponding central projections for ? ; then 11 Pd- Qd 11 < 2a (a),

 11 Pc, Qc, || < a (5a + 3a (a) )
 11 PCJ Qcr' || < 4a + 3a(a) + a<(5a + 3a(a)

 11 P.- Q. || < a(a) and 11 Pn-Qn 11 < a(a + 2a (a)). In particular, the
 samne types occmir in the type decorn position of 9 and zS.

 If we resetrict attention to the most basic situation, that of factors con-

 taining I on a separable Hilbert space the conclusions simplify considerably.

 We state these in:

 THEOREM5\ B. If 9m is a factor and 91 is a von Neum?nann algebrca both
 containing the identity operator I and botht acting on the separable Hilbert

 space *, then 9% is a factor of the same type as c9 if 19n -h9 11 < x.

 Proof. As in the second paragraph of the proof of Lemma 3, if F is a

 central projection in 91, there is a projection E in c9 such that I E-F

 <<(-T ) < 4-. From Corollary B, E is central in Xi, since jj E-F jj
 < < I I Since 9m is a factor, E =0 or E I; so that F 0 or F I

 (from 11 E-F 11 < t). Thus 9 is a factor.



 VON NEUMANN ALGEBRAS I. 53

 If 9n is of type Im and E is a minimal projection in '-h; then, from

 the proof of Lemma 3, there is a minimal projection F in 9% (such that
 E-FE JJ <4). Thus 9% is a factor of type I. From Lemmas 13 and 14,

 91 is of type Im. (If m is an infinite cardinal and Lemma 14 is applied,

 the proof of Lemma 3 allows us to locate minimal projections F1 such that
 Ej -Fj 1< 4, since I is in both '& and 9. The proof of Lemma 14,

 then, proceeds as given.)

 If I is equivalent to a proper subprojection F in 9n (so that C9 is

 infinite), there is a projection N in 91 such that 11 - N 11 < i. Replacing
 E and M1 by I in the proof of Lemma 8, we find that 1 B - V I < 4,
 B*B - I 11 < , and 1 BB* - N < 1; so that, as in that argument, I is

 equivalent to N in 91. Since 11 I -F- (I -N) < 1 and 11 -Fl 1;
 N & I. Thus %T is infinite.

 If 9n is of type II, 9 is not of type I, from the second paragraph of
 this proof, yet 91 is finite. Thus 9t is of type II,.

 If 9n is of type III and F is a non-zero projection in 91, there is a

 projection E in 'i such that 1 E - F < 4. Since St is separable and '&
 is a factor of type III; E is equivalent to I in 9h. (Note that E 7 0 since

 F#Z0 and 11 E-F I1 < .) As before, F is equivalent to I in '. Thus
 91 is a factor of type III.

 Finally, if C9 is a factor of type II,, then, from the preceding, 9i is not
 of type I, II, or III; so that 91 is a factor of type II,,,.
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